Synthesis and crystal structure of Ba₃B₆Si₂O₁₆

M.G. Krzhizhanovskaya¹, L.A. Gorelova¹, R.S. Bubnova², S.K. Filatov¹ ¹St. Petersburg State University, ²Institute of Silicate Chemistry RAS

Single crystals of $Ba_3B_6Si_2O_{16}$ silicoborate were obtained by slow cooling a melt of stoichiometric composition. Crystal structure was determined by direct methods from X-ray single crystal diffractometry data (Bruker KAPPA APEX DUO, MoKa, CCD detector) using a small colorless plate. The structure consists of layered silicoborate anion formed by four crystallographically independent polyhedra: one BO_3 triangle, two BO_4 tetrahedra and one SiO_4 tetrahedron. Ba atoms occupy two different positions in the structure: one of them is inside the layer and another one between the layers. Silicoborate layers are located parallel to (010).

Phase Formation in BaO-B₂O₃-SiO₂ System

According to triangulation reported in (Levin, Ugrinic, 1953) $Ba_3B_6Si_2O_{16}$ is only one stable compound in the BaO-B₂O₃-SiO₂ ternary system. In a wide field of compositions near 3BaO x $3B_2O_3 \times 2SiO_2$ we obtained $Ba_3B_6Si_2O_{16}$ by solid state reaction at 800, 900 and 950 °C mixed with barium borates and/or silicates depending on the composition of initial mixture. Powder XRD data obtained by us for the pure $Ba_3B_6Si_2O_{16}$ synthesized by cooling a melt are in well agreement with the reported before in PDF database and with structural data presented here.

