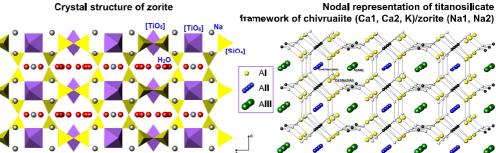


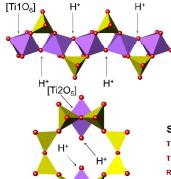
Crystal chemistry and ion-exchange properties of natural titanosilicates: zorite, ivanyukite and lintisite and their synthetic analogues

Spiridonova D.V. 1,2, Krivovichev S.V. 1, Britvin S.N. 1,2, Yakovenchuk V.N.

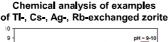
¹ Saint-Petersburg State University, ² Center of X-ray diffraction studies, ³ Geological Institute KSC RAS

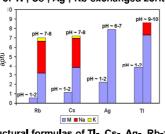


Zorite

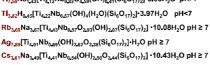

In this work, we report data on exchange with TI+, Cs+, Ag+, Rb+ cations in zorite and structural TI*, Cs*, Ag*, Rb* cations in zorite and structural characteristics of the ion-exchanged forms compared with forms investigated earlier, Crystals of TI-, Cs-, Ag-, Rb- forms of zorite were mounted on an STOE IPDS II diffractometer (MoKq) (TI-zorite, Ag-zorite) and a SMART 1K CCD diffractometer (Cs-, Rb-zorite). The unit cell parameters were determined by the least squares method: TI-zorite: space group Cmmm, a = 7.250(3). b = 23.406(12), c = 7.035(3), A, V = 1193.8(9) A^3 , R(F) = 0.1280; C s-zorite: a = 7.229(5), b = 23.277(5), c = 6.969(5) A, V = 1172.7(12) A^3 , R(F) = 0.0605; Ag-zorite: a = 7.2394(12), b = 23.249(5), c = 6.9211(11) A, V = 1164.9(4) A^3 , R(F) = 0.0704; Rb-zorite: a = 7.221(2), b = 23.251(7), c = 6.9631(19) A, V = 1169.1(6) A^3 , R(F) = 0.0582. zorite: space group *Cmmm*, a = 7.250(3), b = 23.406(12), c = 7.035(3) Å, V = 1193.8(9) Å³,

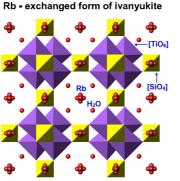
Crystal structure of zorite


 $Na_{6}[Ti(Ti,Nb)_{4}(O,OH)_{5}(Si_{6}O_{17})_{2}] \cdot 11H_{2}O$



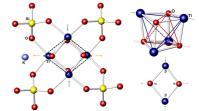
Protonation/deprotonation of the titanosilicate framework




- exchanged form of ivanyukite

Structural formulas of TI-, Cs-, Ag-, Rb-zorite $_{7.58}$ Na_{1.43}[Ti_{4.12}Nb_{0.82}O_{4.59}(OH)_{0.41}(Si₆O₁₇)₂] 5.85H₂O pH>7 $TI_{3,82}H_{0,45}[Ti_{4,22}Nb_{0.57}(OH)_4(H_2O)(Si_6O_{17})_2]$ 3.97H₂O pH<7 $Rb_{3,69}Na_{3,67}[Ti_{4,43}Nb_{0,57}O_{2,93}(OH)_{2,07}(Si_6O_{17})_2] \cdot 10.08H_2O \text{ pH} \ge 7$

 $Rb_{2,16}[Ti_4O_{2,16}(OH)_{1,84}(SiO_4)_3]-5.5H_2O$ Space group P-43m a = 7.809(5) Å


The results obtained allowed to classify extra-framework cation positions into three groups AI, AII, AIII. It has also been shown that the ion-exchange capacity depends upon pH of the solution used for ion-exchange experiments.

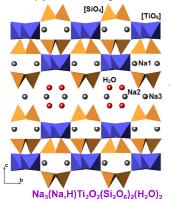
Ivanyukite

The natural ivanyukite-Na-T easily exchanges Na⁺ cations with different monovalent and divalent cations (NH_a*, Cs*, Rb*, Tl*, Ag*, Cu^{2*}, Co^{2*}, Ni²⁺ and Sr^{2*}) from aqueous solutions at ambient conditions. We have studied two structures of ion-exchanged forms of ivanyukite (Rb-form and Sr-form). The crystal structures are based upon mixed three-dimensional octahedral-tetrahedral framework of pharmacosiderite type with channels occupied by Rb+ and Sr2+ cations, and water

In a result of ion-exchange Na⁺ and K⁺ cations by Rb⁺ and Sr²⁺ cations a space group change from R3m to P-43m is observed. Deviation of ivanyukite-Na-T crystal structure from cubic symmetry may be related to the presence of the K* cations, which occupy separate position and are responsible for the framework distortion. The K* cations interaction with oxygen atoms of cubane-like Ti₄(O,OH)₄ clusters of titanosilicate framework results framework stretch in 3-axis direction that is accompanied by decreasing of Ti-O/OH-Ti (α) angle, of Ti-Ti distance and increasing of O/OH-Ti-O/OH (β) angle, of O/OH-O/OH distance in comparison with corresponding parameters of Rb- and Sr-exchanged forms crystal structures.

Distortion of ivanyukite-Na-T titanosilicate framework

R3m (ivanyukite-Na-T) -→ P43m (Rb-, Sr-forms of ivanyukite)


Geometric parameters of cubane-like cluster of TS framework

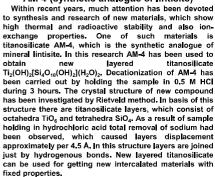
compound	bond length, Å		angle, °	
	O/OH-O/OH	Ti-Ti	α	β
ivanyukite-Na- <i>T</i>	2.532 (2.515)	3.064 (3.044)	98.32	78.80
Rb-ivanyukite	2.480	3.136	102.36	76.07
Sr-ivanyukite	2.460	3.146	102.91	75.38

a = 7.834(5) ÅAM-4 (synthetic analogue of lintisite)

 $Sr_{0.87}[Ti_4(OH)_{2,26}O_{1,74}(SiO_4)_3]-4.36H_2O$

Space group P-43m

Space group A2/a a = 5.2012(8) Å, b = 8.573(2) Å, c = 29.300(6) Å, $V = 1306.4(4) \text{ Å}^3, \beta = 89.26^\circ$


+ 0.5M HCI (3 hours)

AM-4 after decationization

 $Ti_2(OH)_2[Si_4O_{10}(OH)_2](H_2O)_2$ Space group P21/c

a = 11.962(1) Å, b = 8.762(1) Å, c = 5.2182(2) Å, $\dot{V} = 536.98(5) \, \text{Å}^3, \, \beta = 100.95^{\circ}$

AM-4 (synthetic analogue of lintisite)

