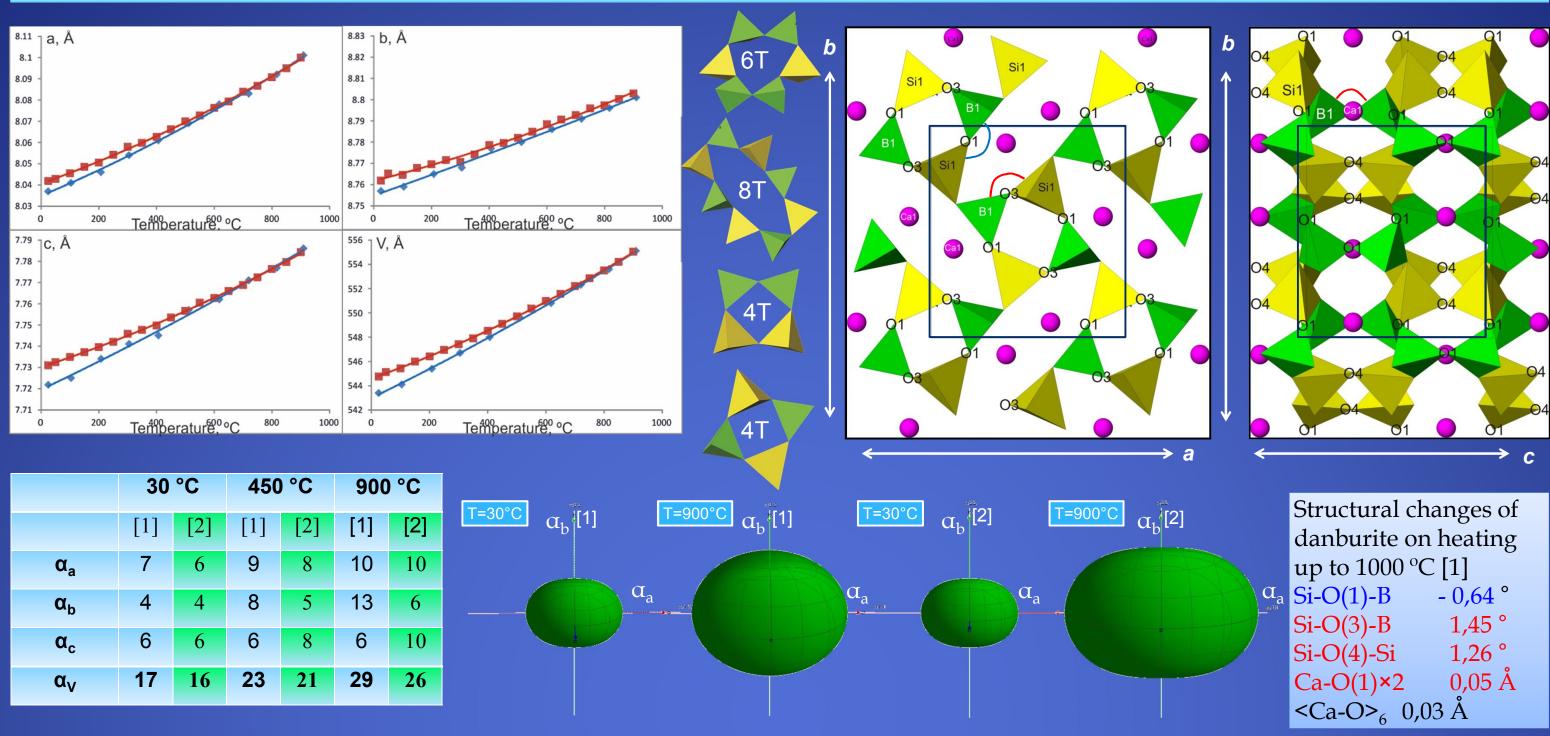
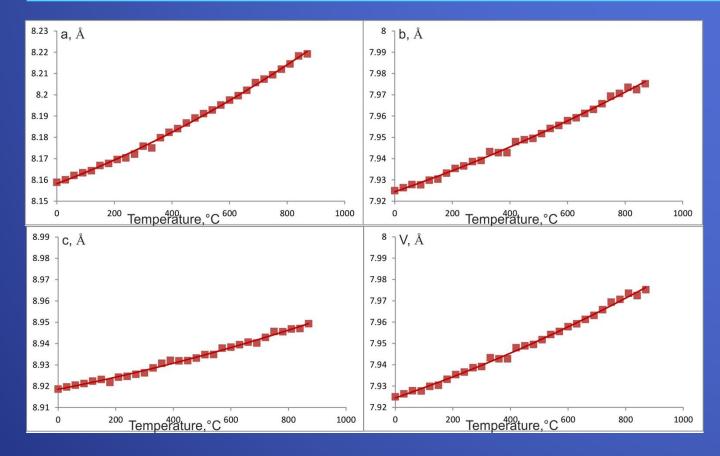
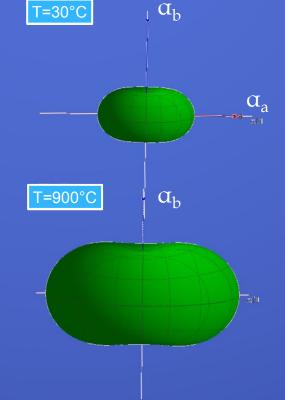
High-Temperature Crystal Chemistry Of Danburite-Like Borosilicates



L.A. Gorelova^{1,2}, M.G. Krzhizhanovskaya¹, R.S. Bubnova^{1,2}, S.K. Filatov¹ ¹St. Petersburg State University, St. Petersburg, Russia ² Institute of Silicate Chemistry RAS, St. Petersburg, Russia


Among unhydrous alkaline borosilicates RB₂Si₂O₈ (R = Ca, Sr, Ba) there are three naturally occurring members: danburite (Ca) (Dunbar, Machatschki, 1931), pekovite (Sr) and maleevite (Ba) (Pautov et al, 2004). Their orthorhombic structure consists of tetrahedral framework with boron and silicon orderly distributed in different tetrahedral sites. Almost all known unhydrous borosilicates are structurally similar to aluminosilicate relatives. Danburite structure type is topologically identical to that of paracelsian RAI₂Si₂O₈ (R = Sr, Ba), although the latter one represents pseudo-orthorhombic framework with monoclinity angle β ~90.01°


CaB₂Si₂O₈, danburite from Dalnegorsk, Russia

[1] K. Sugiyama, Y. Takeuchi, 1985 [2] Present work. Sample of danburite (Dalnegorsk, Primorie, Russia) is provided by Prof. I.V. Pekov

SrB₂Si₂O₈ prepared by solid state reactions at 900 °C for 127 hours

α_{b}	6	7	9
α_{c}	3	4	5
α_{V}	15	20	25
			T(°C)
			830
			730
			630

450 °C

9

900°C

11

30°C

6

 α_a

Linear and volumetric thermal

expansion coefficients for danburite-

like RB₂Si₂O₈ (R = Ca, Sr, Ba) $\times 10^6$ °C⁻¹

BaB₂Si₂O₈ prepared by cooling of stoichiometric melt from 1000 to 900 ° C for 2.5 hours

^{8.36} ∃a, Å 8.31 8.32 8.3 8.22 ²⁰⁰ Temperature, °C ⁶⁰⁰ ²⁰⁰ Temperature, °C ⁶⁰⁰ ₹C, Å 9.17 9.15 9.11 9.09 606 9.03 200 Temperature, °C 600 ²⁰⁰ Temperature,°C 600

 $-\alpha_a$ $\alpha_{e} = 16.10^{-6} \, ^{\circ}\text{C}^{-1}$ $\alpha_b = 5.10^{-6} \,^{\circ} \,^{\circ} \,^{-1}$ $\alpha_{c} = 5.10^{-6} \, ^{\circ}\text{C}^{-1}$

 a_b

Acknowledgments: The work is supported XRD studies are performed

by RFBR (grant 10-03-00732). in XRD research center of Saint Petersburg State University

	Ca	Ca*	Sr	Ва
α _a	7	9	9	16
α_{b}	5	8	7	5
ας	7	6	4	5
α_{V}	19	23	20	23

* K. Sugiyama, Y. Takeuchi, 1985